Characterization and dynamics of the peculiar stream Jhelum

Author:

Woudenberg Hanneke C.ORCID,Koop OrlinORCID,Balbinot EduardoORCID,Helmi Amina

Abstract

Context. Stellar streams are a promising tool to study the Milky Way’s dark matter subhalo population, as interactions with subhalos are expected to leave visible imprints in the streams in the form of substructure. However, there may be other causes of substructure. Aims. Here we studied the kinematics and the unusual morphology of the stellar stream Jhelum. Methods. Using a combination of ground-based photometry and Gaia EDR3 astrometry, we characterized the morphology of Jhelum. We combined this new data with radial velocities from the literature to perform orbit integrations of the stream in static Galactic potentials. We also carried out N-body simulations in the presence of the Sagittarius dwarf galaxy. Results. The new data reveal a previously unreported tertiary component in the stream, as well as several gaps and a kink-like feature in its narrow component. We find that for a range of realistic Galactic potentials, no single orbit is able to reproduce Jhelum’s radial velocity data entirely. A generic property of the orbital solutions is that they share a similar orbital plane to Sagittarius and this leads to repeated encounters with the stream. Using N-body simulations that include a massive Sagittarius, we explored its effect on Jhelum, and we show that these encounters are able to qualitatively reproduce the narrow and broad components in Jhelum, as well as create a tertiary component in some cases. We also find evidence that such encounters can result in an apparent increase in the velocity dispersion of the stream by a factor up to four due to overlapping narrow and broad components. Conclusions. Our findings suggest that the Jhelum stream is even more complex than once thought; however, its morphology and kinematics can tentatively be explained via the interactions with Sagittarius. In this scenario, the formation of Jhelum’s narrow and broad components occurs naturally, yet some of the smaller gap-like features remain to be explained.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3