Multiwavelength observations of Swift J0243.6+6124 from 2017 to 2022

Author:

Liu WeiORCID,Yan Jingzhi,Reig PabloORCID,Wang XiaofengORCID,Xiao GuangchengORCID,Lin Han,Zhang Xinhan,Sai Hanna,Chen Zhihao,Yan Shengyu,Liu Qingzhong

Abstract

Context.Swift J0243.6+6124 is a high-mass X-ray binary that went into a giant X-ray outburst in 2017. During this event, the X-ray luminosity reached the highest value ever measured in a galactic Be/X-ray binary. Aims. Our aim is to study the long-term variability of Swift J0243.6+6124 after the 2017 major X-ray outburst. Methods. We have obtained optical spectroscopy and photometry data during four years after the event. The long-term photometric light curve and the equivalent widths of the Hα and He I λ6678 lines were used to monitor the state of the Be star’s circumstellar disk. The Hα line profiles show evidence for V/R variability that was accounted for by fitting the Hα spectral line profile with two Gaussian functions. We divided our data into three phases according to the intensity of the X-ray, optical, and infrared emission. Results. Phase I covers the rise and decay of the giant X-ray outburst that took place in October–November 2017. We interpret phase II as the dissipation of the Be star’s equatorial disk and phase III as its recovery. The timescale of a complete formation and dissipation process is about 1250 days. The epoch when the dissipation process stopped and the reformation period began is estimated to be around MJD 58530. We find a delay of ∼100–200 days between the minimum of the optical or infrared intensity and the strength of the Hα line after the X-ray outburst, which may indicate that the dissipation of the disk begins from the inner parts. The motion of the density perturbation inside the disk is prograde, with a V/R quasi-period of about four years. The source shows a positive correlation in the (B − V) color index versus V-band magnitude diagram, which implies that the system is seen at a small or moderate inclination angle. Conclusions. Despite the super-Eddington X-ray luminosity during the outburst, the subsequent pattern of long-term optical and IR variability of Swift J0243.6+6124 is typical of Be/X-ray binaries.

Funder

the National Key R&D Program of China

the National Natural Science Foundation of China

the National Science Foundation of China

the Scholar Program of Beijing Academy of Science and Technology

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference35 articles.

1. Bikmaev I., Shimansky V., Irtuganov E., et al. 2017, ATel, 10968

2. Orbit and intrinsic spin-up of the newly discovered transient X-ray pulsar Swift J0243.6+6124

3. TheGaiamission

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3