A Monte Carlo code for the collisional evolution of porous aggregates (CPA)

Author:

Millán Emmanuel N.,Planes María Belén,Urbassek Herbert M.,Bringa Eduardo M.

Abstract

Context. The collisional evolution of submillimeter-sized porous dust aggregates is important in many astrophysical fields. Aims. We have developed a Monte Carlo code to study the processes of collision between mass-asymmetric, spherical, micron-sized porous silica aggregates that belong to a dust population. Methods. The Collision of Porous Aggregates (CPA) code simulates collision chains in a population of dust aggregates that have different sizes, masses, and porosities. We start from an initial distribution of granular aggregate sizes and assume some collision velocity distribution. In particular, for this study we used a random size distribution and a Maxwell-Boltzmann velocity distribution. A set of successive random collisions between pairs of aggregates form a single collision chain. The mass ratio, filling factor, and impact velocity influence the outcome of the collision between two aggregates. We averaged hundreds of thousands of independent collision chains to obtain the final, average distributions of aggregates. Results. We generated and studied four final distributions (F), for size (n), radius (R), porosity, and mass-porosity distributions, for a relatively low number of collisions. In general, there is a profuse generation of monomers and small clusters, with a distribution F (R) ∝ R−6 for small aggregates. Collisional growth of a few very large clusters is also observed. Collisions lead to a significant compaction of the dust population, as expected. Conclusions. The CPA code models the collisional evolution of a dust population and incorporates some novel features, such as the inclusion of mass-asymmetric aggregates (covering a wide range of aggregate radii), inter-granular friction, and the influence of porosity.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference75 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Impact of internal structure on aggregate collisions;Monthly Notices of the Royal Astronomical Society;2023-09-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3