UNIONS: The impact of systematic errors on weak-lensing peak counts

Author:

Ayçoberry EmmaORCID,Ajani VirginiaORCID,Guinot AxelORCID,Kilbinger MartinORCID,Pettorino ValeriaORCID,Farrens SamuelORCID,Starck Jean-LucORCID,Gavazzi RaphaëlORCID,Hudson Michael J.

Abstract

Context. The Ultraviolet Near-Infrared Optical Northern Survey (UNIONS) is an ongoing deep photometric multiband survey of the northern sky. As part of UNIONS, the Canada-France Imaging Survey (CFIS) provides r-band data, which we use to study weak-lensing peak counts for cosmological inference. Aims. We assess systematic effects for weak-lensing peak counts and their impact on cosmological parameters for the UNIONS survey. In particular, we present results on local calibration, metacalibration shear bias, baryonic feedback, the source galaxy redshift estimate, intrinsic alignment, and cluster member dilution. Methods. For each uncertainty and systematic effect, we describe our mitigation scheme and the impact on cosmological parameter constraints. We obtain constraints on cosmological parameters from Monte Carlo Markov chains using CFIS data and MassiveNuS N-body simulations as a model for peak counts statistics. Results. Depending on the calibration (local versus global, and the inclusion or not of the residual multiplicative shear bias), the mean matter density parameter, Ωm, can shift by up to −0.024 (−0.5σ). We also see that including baryonic corrections can shift Ωm by +0.027 (+0.5σ) with respect to the dark-matter-only simulations. Reducing the impact of the intrinsic alignment and cluster member dilution through signal-to-noise cuts leads to larger constraints. Finally, with a mean redshift uncertainty of Δ = 0.03, we see that the shift in Ωm (+0.001, which corresponds to +0.02σ) is not significant. Conclusions. This paper investigates, for the first time with UNIONS weak-lensing data and peak counts, the impact of systematic effects. The value of Ωm is the most impacted and can shift by up to ∼0.03, which corresponds to 0.5σ depending on the choices for each systematics. We expect constraints to become more reliable with future (larger) data catalogs, for which the current pipeline will provide a starting point. The code used to obtain the results is available on GitHub.

Funder

N/A

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Accurate kappa reconstruction algorithm for masked shear catalog;Physical Review D;2024-06-20

2. Towards a full wCDM map-based analysis for weak lensing surveys;Monthly Notices of the Royal Astronomical Society;2023-07-28

3. Starlet higher order statistics for galaxy clustering and weak lensing;Astronomy & Astrophysics;2023-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3