Origin of eclipsing time variations: Contributions of different modes of the dynamo-generated magnetic field

Author:

Navarrete Felipe H.ORCID,Käpylä Petri J.ORCID,Schleicher Dominik R. G.ORCID,Ortiz Carolina A.ORCID,Banerjee Robi

Abstract

Context. The possibility to detect circumbinary planets and to study stellar magnetic fields through eclipsing time variations (ETVs) in binary stars has sparked an increase of interest in this area of research. Aims. We revisit the connection between stellar magnetic fields and the gravitational quadrupole moment Qxx and compare different dynamo-generated ETV models with our simulations. Methods. We present magnetohydrodynamical simulations of solar mass stars with rotation periods of 8.3, 1.2, and 0.8 days and perform a detailed analysis of the magnetic and quadrupole moment using spherical harmonic decomposition. Results. The extrema of Qxx are associated with changes in the magnetic field structure. This is evident in the simulation with a rotation period of 1.2 days. Its magnetic field has a more complex behavior than in the other models, as the large-scale nonaxisymmetric field dominates throughout the simulation and the axisymmetric component is predominantly hemispheric. This triggers variations in the density field that follow the magnetic field asymmetry with respect to the equator, affecting the zz component of the inertia tensor, and thus modulating Qxx. The magnetic fields of the two other runs are less variable in time and more symmetric with respect to the equator, such that the variations in the density are weaker, and therefore only small variations in Qxx are seen. Conclusions. If interpreted via the classical Applegate mechanism (tidal locking), the quadrupole moment variations obtained in the current simulations are about two orders of magnitude below those deduced from observations of post-common-envelope binaries. However, if no tidal locking is assumed, our results are compatible with the observed ETVs.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3