Chandra follow-up of the Hectospec Cluster Survey: Comparison of caustic and hydrostatic masses and constraints on the hydrostatic bias

Author:

Logan Crispin H. A.,Maughan Ben J.ORCID,Diaferio Antonaldo,Duffy Ryan T.,Geller Margaret J.,Rines Kenneth,Sohn Jubee

Abstract

Context. Clusters of galaxies are powerful probes with which to study cosmology and astrophysics. However, for many applications, an accurate measurement of a cluster’s mass is essential. A systematic underestimate of hydrostatic masses from X-ray observations (the so-called hydrostatic bias) may be responsible for tension between the results of different cosmological measurements. Aims. We compare X-ray hydrostatic masses with masses estimated using the caustic method (based on galaxy velocities) in order to explore the systematic uncertainties of both methods and place new constraints on the level of hydrostatic bias. Methods. Hydrostatic and caustic mass profiles were determined independently for a sample of 44 clusters based on Chandra observations of clusters from the Hectospec Cluster Survey. This is the largest systematic comparison of its kind. Masses were compared at a standardised radius (R500) using a model that includes possible bias and scatter in both mass estimates. The systematics affecting both mass determination methods were explored in detail. Results. The hydrostatic masses were found to be systematically higher than caustic masses on average, and we found evidence that the caustic method increasingly underestimates the mass when fewer galaxies are used to measure the caustics. We limit our analysis to the 14 clusters with the best-sampled caustics where this bias is minimised (≥210 galaxies), and find that the average ratio of hydrostatic-to-caustic mass at R500 is M500,X/M500,C = 1.12−0.10+0.11. Conclusions. We interpret this result as a constraint on the level of hydrostatic bias, favouring small or zero levels of hydrostatic bias (less than 20% at the 3σ level). However, we find that systematic uncertainties associated with both mass estimation methods remain at the 10 − 15% level, which would permit significantly larger levels of hydrostatic bias.

Funder

STFC

MIUR

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3