A semiempirical approach to low-energy cosmic ray propagation in the diffuse interstellar medium

Author:

Franceschi Riccardo,Shore Steven N.

Abstract

Context. We investigate the ionization of the diffuse interstellar medium by cosmic rays by modeling their propagation along the wandering magnetic fields using a Monte Carlo method. We explore how particle trapping and second-order Fermi processes affect the ionization of the medium. Aims. We study how low-energy comic rays propagate in turbulent, translucent molecular clouds, and how they regulate the ionization and both lose and gain energy from the medium. Methods. As a test case, we used high spatial resolution (0.03 pc) CO maps of a well-studied high latitude translucent cloud, MBM 3, to model turbulence. The propagation problem is solved with a modified Monte Carlo procedure that includes trapping, energization, and ionization losses. Results. In the homogeneous medium, trapping and re-energization do not produce a significant effect. In the nonuniform medium, particles can be trapped for a long time inside the cloud. This modifies the cosmic ray distribution due to stochastic acceleration at the highest energies (∼100 MeV). At lower energies, the re-energization is too weak to produce an appreciable effect. The change in the energy distribution does not significantly affect the ionization losses, so ionization changes are due to trapping effects. Conclusions. Our Monte Carlo approach to cosmic ray propagation is an alternative method for solving the transport equation. This approach can be benchmarked to gas observations of molecular clouds. Using this approach, we demonstrate that stochastic Fermi acceleration and particle trapping occurs in inhomogeneous clouds, significantly enhancing their ionization.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3