Are the host galaxies of long gamma-ray bursts more compact than star-forming galaxies of the field?

Author:

Schneider B.ORCID,Le Floc’h E.,Arabsalmani M.ORCID,Vergani S. D.,Palmerio J. T.

Abstract

Context. Long gamma-ray bursts (GRBs) offer a promising tool for tracing the cosmic history of star formation, especially at high redshift, where conventional methods are known to suffer from intrinsic biases. Previous studies of GRB host galaxies at low redshift showed that high surface density of stellar mass and high surface density of star formation rate (SFR) can potentially enhance the GRB production. Evaluating the effect of such stellar densities at high redshift is therefore crucial to fully control the ability of long GRBs for probing the activity of star formation in the distant Universe. Aims. We assess how the size, stellar mass, and star formation rate surface densities of distant galaxies affect the probability of their hosting a long GRB, using a sample of GRB hosts at z > 1 and a control sample of star-forming sources from the field. Methods. We gathered a sample of 45 GRB host galaxies at 1 < z < 3.1 observed with the Hubble Space Telescope WFC3 camera in the near-infrared. Our subsample at 1 < z < 2 has cumulative distributions of redshift and stellar mass consistent with the host galaxies of known unbiased GRB samples, while our GRB host selection at 2 < z < 3.1 has lower statistics and is probably biased toward the high end of the stellar mass function. Using the GALFIT parametric approach, we modeled the GRB host light profile with a Sérsic component and derived the half-light radius for 35 GRB hosts, which we used to estimate the star formation rate and stellar mass surface densities of each object. We compared the distribution of these physical quantities to the SFR-weighted properties of a complete sample of star-forming galaxies from the 3D-HST deep survey at a comparable redshift and stellar mass. Results. We show that similarly to z < 1, GRB hosts are smaller in size and they have higher stellar mass and star formation rate surface densities than field galaxies at 1 < z < 2. Interestingly, this result is robust even when separately considering the hosts of GRBs with optically bright afterglows and the hosts of dark GRBs, as the two subsamples share similar size distributions. At z > 2, however, GRB hosts appear to have sizes and stellar mass surface densities more consistent with those characterizing the field galaxies. This may reveal an evolution with redshift of the bias between GRB hosts and the overall population of star-forming sources, although we cannot exclude that our result at z > 2 is also affected by the prevalence of dark GRBs in our selection. Conclusions. In addition to a possible trend toward a low-metallicity environment, other environmental properties such as stellar density appear to play a role in the formation of long GRBs, at least up to z ∼ 2. This might suggest that GRBs require special environments to enhance their production.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3