Constraining planetary mass-loss rates by simulating Parker wind profiles with Cloudy

Author:

Linssen D. C.ORCID,Oklopčić A.ORCID,MacLeod M.ORCID

Abstract

Models of exoplanet atmospheres based on Parker wind density and velocity profiles are a common choice in fitting spectroscopic observations tracing planetary atmospheric escape. Inferring atmospheric properties using these models often results in a degeneracy between the temperature and the mass-loss rate, and thus provides weak constraints on either parameter. We present a framework that can partially resolve this degeneracy by placing more stringent constraints on the expected thermospheric temperature. We use the photoionization code Cloudy within an iterative scheme to compute the temperature structure of a grid of 1D Parker wind models, including the effects of radiative heating/cooling, as well as the hydrodynamic effects (expansion cooling and heat advection). We constrain the parameter space by identifying models that are not self-consistent through a comparison of the simulated temperature in the He 10 830 Å line-forming region to the temperature assumed in creating the models. We demonstrate this procedure on models based on HD 209458 b. By investigating the Parker wind models with an assumed temperature between 4000 and 12 000 K, and a mass-loss rate between 108 and 1011 g s−1, we are able to rule out a large portion of this parameter space. Furthermore, we fit the models to previous observational data and combine both constraints to find a preferred thermospheric temperature of T = 8200 −1100+1200 K and a mass-loss rate of = 10 9.84 −0.27+0.24 g s−1 assuming a fixed atmospheric composition and no gas pressure confinement by the stellar wind. Using the same procedure, we constrain the temperatures and mass-loss rates of WASP-69 b, WASP-52 b, HAT-P-11 b, HAT-P-18 b and WASP-107 b.

Funder

NWO Veni

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3