Nonthermal radiation from the central region of super-accreting active galactic nuclei

Author:

Sotomayor PabloORCID,Romero Gustavo E.ORCID

Abstract

Context. The radio emission mechanism in active galactic nuclei (AGNs) with high accretion rates is unclear. It has been suggested that low-power jets may explain the observed radiation at subparsec scales. The mechanisms for jet formation at super-Eddington rates, however, are not well understood. On the same scale, clouds from the broad-line region (BLR) propagating with supersonic velocities in the wind launched by the accretion disk may lead to the production of nonthermal radiation. Aims. We aim to characterize the nonthermal emission produced by the propagation of clouds through the wind of the accretion disk in super-accreting AGNs, and to estimate the relevance of such a contribution to the radio band of the electromagnetic spectrum. Methods. We determined the conditions under which the BLR clouds are not destroyed by shocks or hydrodynamic instabilities when immersed in the powerful wind of the accretion disk. These clouds form bowshocks which are suitable sites for particle acceleration. We developed a semianalytical model to calculate the distribution of relativistic particles in these bowshocks and the associated spectral energy distribution (SED) of the emitted radiation. Results. For typical parameters of super-accreting AGNs, we find that the cloud-wind interactions can produce nonthermal emission from radio up to a few tens of TeV, with slight absorption effects, if the processes occur outside the wind photosphere. Conclusions. Radio emission in AGNs without jets can be explained if the accretion rate is super-Eddington and if there is a BLR at subparsec scales around the central black hole. The accretion rate must not be extremely high so most of the clouds orbit outside of the wind photosphere and the radiation can escape to the observer. Instabilities in the disk wind, which have previously been reported in numerical simulations, generate clumps that increase the filling factor of the overdensities in the BLR and enhance the emitted radiation.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3