XXL-HSC: Link between AGN activity and star formation in the early Universe (z ⩾ 3.5)

Author:

Pouliasis E.ORCID,Mountrichas G.ORCID,Georgantopoulos I.,Ruiz A.ORCID,Gilli R.ORCID,Koulouridis E.ORCID,Akiyama M.ORCID,Ueda Y.,Garrel C.,Nagao T.ORCID,Paltani S.,Pierre M.,Toba Y.ORCID,Vignali C.

Abstract

In this work, our aim is to investigate the star formation rate (SFR) of the host galaxies of active galactic nuclei (AGNs) in the early Universe. To this end, we constructed a sample of 149 luminous (L2 − 10 keV > 1044 erg s−1) X-ray AGNs at z ≥ 3.5 selected in three fields with different depths and observed areas from the Chandra COSMOS Legacy survey, XMM-XXL North, and eROSITA Final Equatorial-Depth Survey. We built their spectral energy distributions (SED) using the available multi-wavelength photometry from X-rays up to the far-IR. Then, we estimated the stellar mass, M*, and the SFR of the AGNs using the X-CIGALE SED fitting algorithm. After applying several quality criteria, we ended up with 89 high-z sources. More than half (55%) of the X-ray sample have spectroscopic redshifts. Based on our analysis, our high-z X-ray AGNs live in galaxies with a median M* = 5.6 × 1010 M and SFR* ≈ 240 Myr−1. The majority of the high-z sources (∼89%) were found inside or above the main sequence (MS) of star-forming galaxies. Estimations of the normalised SFR, SFRNORM, defined as the ratio of the SFR of AGNs, to the SFR of MS galaxies, show that the SFR of AGNs is enhanced by a factor of ∼1.8 compared to non-AGN star-forming systems. Combining our results with previous studies at lower redshifts, we confirmed that SFRNORM does not evolve with redshift. Using the specific black hole accretion rate (i.e. LX divided by M*), λBHAR, which can be used as a tracer of the Eddington ratio, we found that the majority of AGNs that lie inside or above the MS have higher specific accretion rates compared to sources below the MS. Finally, we found indications that the SFR of the most massive AGN host galaxies (log (M*/M) > 1011.5 − 12) remains roughly constant as a function of M*, in agreement with the SFR of MS star-forming galaxies.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3