Atomic diffusion and turbulent mixing in solar-like stars: Impact on the fundamental properties of FG-type stars

Author:

Moedas NunoORCID,Deal MorganORCID,Bossini DiegoORCID,Campilho Bernardo

Abstract

Context. Chemical composition is an important factor that affects stellar evolution. The element abundance on the stellar surface evolves along the lifetime of the star because of transport processes, including atomic diffusion. However, models of stars with masses higher than about 1.2 M predict unrealistic variations at the stellar surface. This indicates the need for competing transport processes that are mostly computationally expensive for large grids of stellar models. Aims. The purpose of this study is to implement turbulent mixing in stellar models and assess the possibility of reproducing the effect of radiative accelerations with turbulent mixing for elements like iron in order to make the computation of large grids possible. Methods. We computed stellar models with the Module for Experiments in Stellar Astrophysics code and assessed the effects of atomic diffusion (with radiative acceleration) in the presence of turbulent mixing. Starting from a turbulent mixing prescription already calibrated on helium surface abundances of F-type stars as a reference, we parametrised the effect of radiative accelerations on iron with a turbulent diffusion coefficient. Finally, we tested this parametrisation by modelling two F-type stars of the Kepler Legacy sample. Results. We found that, for iron, a parametrisation of turbulent mixing that simulates the effect of radiative acceleration is possible. This leads to an increase in the efficiency of the turbulent mixing to counteract the effect of gravitational settling. This approximation does not affect significantly the surface abundances of the other elements we studied, except for oxygen and calcium. We demonstrate that this parametrisation has a negligible impact on the accuracy of the seismic properties inferred with these models. Moreover, turbulent mixing makes the computation of realistic F-type star models including the effect atomic diffusion possible. This leads to differences of about 10% in the inferred ages compared to results obtained with models that neglect these processes. Conclusions. The inclusion of turbulent mixing and atomic diffusion with radiative accelerations allows a more realistic characterisation of F-type stars. The parametrisation of the effect of radiative acceleration on iron opens the possibility to compute larger grids of stellar models in a reasonable amount of time, which is currently difficult when the different chemical transport mechanisms, especially radiative accelerations, are considered, although this parametrisation cannot simulate the evolution of abundances of all elements (e.g. calcium).

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3