Time-dependent, long-term hydrodynamic simulations of the inner protoplanetary disk

Author:

Gehrig L.ORCID,Steiner D.ORCID,Vorobyov E. I.,Güdel M.

Abstract

Context. The spin evolution of young protostars, surrounded by an accretion disk, still poses problems for observations and theoretical models. In recent studies, the importance of the magnetic star-disk interaction for stellar spin evolution has been elaborated. The accretion disk in these studies, however, is only represented by a simplified model and important features are not considered. Aims. A more realistic representation of the accretion disk is indispensable for a better understanding of the star-disk interaction and the stellar spin evolution. The aim of this study is to investigate the influence of a hydrodynamic disk evolution on the stellar rotational period and vice versa during the accretion phase. Methods. We combined the implicit hydrodynamic TAPIR disk code with a stellar spin evolution model. The influence of stellar magnetic fields on the disk dynamics, the radial position of the inner disk radius, as well as the influence of stellar rotation on the disk were calculated self-consistently. Results. Within a defined parameter space, we can reproduce the majority of fast and slow rotating stars observed in young stellar clusters. Additionally, the back reaction of different stellar spin evolutionary tracks on the disk can be analyzed. Disks around fast rotating stars are located closer to the star. Consequently, the disk midplane temperature in the innermost disk region increases significantly compared to slow rotating stars. We can show the effects of stellar rotation on episodic accretion outbursts. The higher temperatures of disks around fast rotating stars result in more outbursts and a longer outbursting period over the disk lifetime. Conclusions. The combination of a long-term hydrodynamic disk and a stellar spin evolution model allows the inclusion of previously unconsidered effects such as the back-reaction of stellar rotation on the long-term disk evolution and the occurrence of accretion outbursts. However, a wider parameter range has to be studied to further investigate these effects. Additionally, a possible interaction between our model and a more realistic stellar evolution code (e.g., the MESA code) can improve our understanding of the stellar spin evolution and its effects on the pre-main sequence star.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference102 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3