Radial distribution of plasma at comet 67P

Author:

Edberg N. J. T.ORCID,Johansson F. L.ORCID,Eriksson A. I.ORCID,Vigren E.,Henri P.ORCID,De Keyser J.ORCID

Abstract

Context. The Rosetta spacecraft followed comet 67P/Churyumov-Gerasimenko (67P) for more than two years at a slow walking pace (~1 m s−1) within 1500 km from the nucleus. During one of the radial movements of the spacecraft in the early phase of the mission, the radial distribution of the plasma density could be estimated, and the ionospheric density was found to be inversely proportional to the cometocentric distance r from the nucleus (a 1/r distribution). Aims. This study aims to further characterise the radial distribution of plasma around 67P throughout the mission and to expand on the initial results. We also aim to investigate how a 1/r distribution would be observed during aflyby with a fast (~10’s km s−1) spacecraft, such as the upcoming Comet Interceptor mission, when there is also an asymmetry introduced to the outgassing over the comet surface. Methods. To determine the radial distribution of the plasma, we used data from the Langmuir probe and Mutual Impedance instruments from the Rosetta Plasma Consortium during six intervals throughout the mission, for which the motion of Rosetta was approximately radial with respect to the comet. We then simulated what distribution a fast flyby mission would actually observe during its passage through a coma when there is a 1/r plasma density distribution as well as a sinusoidal variation with a phase angle (and then a sawtooth variation) multiplied to the outgassing rate. Results. The plasma density around comet 67P is found to roughly follow a 1/r dependence, although significant deviations occur in some intervals. If we normalise all data to a common outgassing rate (or heliocentric distance) and combine the intervals to a radial range of 10–1500 km, we find a 1/r1.19 average distribution. The simulated observed density from a fast spacecraft flying through a coma with a 1/r distribution and an asymmetric outgassing can, in fact, appear anywhere in the range from a 1/r distribution to a 1/r2 distribution, or even slightly outside of this range. Conclusions. The plasma density is distributed in such a way that it approximately decreases in a manner that is inversely proportional to the cometocentric distance. This is to be expected from the photoionisation of a collision-less, expanding neutral gas at a constant ionisation rate and expansion speed. The deviation from a pure 1/r distribution is in many cases caused by asymmetric outgassing over the surface, additional ionisation sources being present, electric fields accelerating plasma, and changing upstream solar wind conditions. A fast flyby mission can observe a radial distribution that deviates significantly from a 1/r trend if the outgassing is not symmetric over the surface. The altitude profile that will be observed depends very much on the level of outgassing asymmetry, the flyby velocity, the comet rotation rate, and the rotation phase. It is therefore essential to include data from both the inbound and outbound legs, as well as to compare plasma density to neutral density to get a more complete understanding of the radial distribution of the plasma.

Funder

SNSA

CNES

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3