Backtracing the internal rotation history of the β Cep star HD 129929

Author:

Salmon S. J. A. J.,Moyano F. D.,Eggenberger P.,Haemmerlé L.,Buldgen G.

Abstract

Context. HD 129929 is a slowly rotating β Cephei pulsator with a rich spectrum of detected oscillations, including two rotational multiplets. The asteroseismic interpretation revealed the presence of radial differential rotation in this massive star of ∼9.35 M. The stellar core is indeed estimated to spin ∼3.6 times faster than the surface. The surface rotation was consequently derived as v ∼ 2 km s−1. This massive star represents an ideal counterpart to the wealth of space-based photometry results for main-sequence and evolved low-mass stars. Those latter stars have revealed a new, and often unexpected, picture of the angular momentum transport processes acting in stellar interiors. Aims. We investigate in a new way the constraints on the internal rotation of HD 129929, as a marker of the evolution of the internal rotation during the main sequence of a massive star. We test both hydrodynamic and magnetic instability transport processes of angular momentum. Methods. We used the best asteroseismic model obtained in an earlier work. We calibrated stellar models including rotation, with different transport processes, to reproduce that reference model. We then looked to determine whether one process is favoured to reproduce the rotation profile of HD 129929, based on the fit of the asteroseismic multiplets. Results. The impact of the Tayler magnetic instability on the angular momentum transport predicts a ratio of the core-to-surface rotation rate of only 1.6, while the recently revised prescription of this mechanism predicts solid-body rotation. Both are too low in comparison with the asteroseismic inference. The models with only hydrodynamic processes are in good agreement with the asteroseismic measurements. Strikingly, we can also get a constraint on the profile of rotation on the zero age main sequence: likely, the ratio between the core and surface rotation was at least ∼1.7. Conclusions. Transport of angular momentum by the Tayler magnetic instability is discarded for this star. The models with pure hydrodynamical processes reproduce the asteroseismic constraints. This result is specific to a slow rotator and has to be verified more generally in other massive main-sequence stars. Constraints on the rotation in earlier stages of this star also offer a new opportunity to test the impact of accretion during the pre-main sequence evolution.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3