Revisiting the high-mass transfer close binary star system AU Monocerotis

Author:

Armeni Antonio,Shore Steven N.

Abstract

Context. AU Monocerotis is an eclipsing, double-lined spectroscopic binary with a period of 11 days that is in a state of extreme mass transfer, consisting of a main sequence B-type embedded in a thick accretion disk fed by a Roche lobe overflowing evolved G-type companion. It is also one of the double periodic variable Algol-type binaries. Aims. Our aim is to study the accretion environment and the origin of the long cycle in the system. We present revised properties of the gainer by including contributions from the accretion disk and its boundary layer, because the absorption lines used in previous works to estimate the parameters were contaminated by the disk absorption. Methods. We performed a multiwavelength spectroscopic study using archival high-resolution IUE ultraviolet (1200–3200 Å) spectra and optical spectra (from about 3700–9000 Å) from FEROS, HARPS, and SOPHIE. Results. Using the optical He I lines and the UV Si III, C II, Si IV lines, we derived new parameters for the temperature, gravity, and rotational velocity of the B star. The IUE spectra delineate a stratified environment around the gainer, with spectral lines such as O I, Mg II, Al II, and Si II formed in the outer accretion disk and a pseudo-photospheric boundary layer that alters the spectrum. Phase-limited discrete outflows, detected in the time-dependent absorption, trace the stream impact site and the disturbance it creates downstream in the disk. The long-term variability is due to changes in the accretion disk structure and circumstellar environment. Enhanced systemic mass outflow is observed at long cycle maximum, reaching at least 1000 km s−1. Conclusions. These results highlight the complex interplay between physical mechanisms that regulate the evolution of strongly interacting mass-exchanging binary stars.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3