The first molecules in the intergalactic medium and halos of the Dark Ages and Cosmic Dawn

Author:

Novosyadlyj B.,Kulinich Yu.,Melekh B.ORCID,Shulga V.

Abstract

We study the formation and destruction of the first molecules at the epochs of the Dark Ages and Cosmic Dawn to evaluate the luminosity of the protogalaxy clumps (halos) in the molecular lines. The cosmological recombination is described using the RecFast model of an effective three-level atom, while the chemistry of the molecules is examined using the relevant basic kinetic equations. We then studied the effect of collisional and radiative excitation of molecules on the intensity of molecular emission in both warm and hot halos. Using the Planck data on the reionization of the intergalactic medium at z ∼ 6−8, we evaluated the upper limits of the light energy density for four models of thermal light from the first sources that appeared in the Cosmic Dawn epoch. Assuming that in the halos, the light energy density may essentially be even higher, we estimated the impact of the light from the first sources (the first light) on the formation and destruction of the first molecules in them as well as between them. We show that the molecules H2 and HD are destroyed by photodissociation processes shortly before the full reionization in the inter-halo medium, in the medium of both types of halos and for all models of the first light. At the same time, the number density of helium hydride ions, HeH+, shows essentially more complicated dependences on the kinetic temperature of halos and the models of the first light. These features characterizing the abundance of molecules also determine the intensity of the halos luminescence during their evolution. Furthermore, we calculated the evolution of the brightness temperature of the individual halo in the rotational lines of H2, HD and HeH+ molecules relative to the temperature of the cosmic microwave background at redshifts corresponding to the Dark Ages and Cosmic Dawn epochs. It does not exceed the microkelvin, but its detection may be an important source of information about the physical processes taking place at the beginning of the formation of the first stars and galaxies at the epochs of the Dark Ages and Cosmic Dawn.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3