Author:
Mastichiadis A.,Petropoulou M.,Kylafis N. D.
Abstract
Context. Black-hole X-ray binaries (BHXRBs) in the hard and hard-intermediate spectral (and temporal) states exhibit in their power spectra characteristic frequencies called type-C quasi-periodic oscillations (QPOs). Various models that can explain them with various degrees of success have been proposed, but a definitive answer is still missing.
Aims. The hot Comptonizing corona interacting with the cold accretion disk, both of which are central in understanding BHXRBs, is essentially a dynamical system. Our aim is to investigate if the radiative coupling between the two components can produce QPOs.
Methods. We write and solve the time-dependent equations that describe energy conservation in the system corona – accretion disk. We examine both constant and variable mass accretion rates. By necessity, in this first investigation we use a simple model, but it contains all the essential ingredients.
Results. For a constant mass accretion rate and certain justifiable conditions, the dynamic corona – disk system exhibits oscillations, which die out after a few cycles. The characteristic frequencies of these oscillations are similar to the ones observed in the power spectra of BHXRBs. For most parameters, the natural frequencies persist even in the case of variable accretion rates.
Conclusions. We argue that type-C QPOs in BHXRBs could, in principle, arise from the interaction of the hot Comptonizing corona with the much colder accretion disk. If this picture is correct, it has immediate implications for other systems that contain the above constituents, such as active galactic nuclei.
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献