Topological models to infer multiphase interstellar medium properties

Author:

Lebouteiller V.ORCID,Ramambason L.ORCID

Abstract

Context. Spectroscopic observations of high-redshift galaxies slowly reveal the same complexity of the interstellar medium (ISM) as expected from resolved observations in nearby galaxies. While providing, in principle, a wealth of diagnostics concerning galaxy evolution, star formation, or the nature and influence of compact objects, such high-z spectra are often spatially and spectrally unresolved, and inferring reliable diagnostics represents a major obstacle. Bright, nearby, unresolved galaxies observed in the optical and infrared domains provide many constraints to design methods to infer ISM properties, but they have so far been limited to deterministic methods and/or with simple topological assumptions (e.g., single 1D model). Aims. It is urgent to build upon previous ISM multiphase and multicomponent methods by using a probabilistic approach that makes it possible to derive probability density functions for relevant parameters while also enabling a large number of free parameters with potential priors. The goal is to provide a flexible statistical framework that is agnostic to the model grid and that considers either a few discrete components defined by their parameter values and/or statistical distributions of parameters. In this paper, we present a first application with the objective to infer probability distributions of several physical parameters (e.g., the mass of H0, H2, escape fraction of ionizing photons, and metallicity) for the star-forming regions of the metal-poor dwarf galaxy I Zw 18 in order to confirm the low molecular gas content and high escape fraction of ionizing photons from H ii regions. Methods. We present a Bayesian approach to model a suite of spectral lines using a sequential Monte Carlo method provided by the Python package PyMC which combines several concepts such as tempered likelihoods, importance sampling, and independent Metropolis-Hastings chains. The algorithm, provided by the associated code MULTIGRIS, accepts a few components which can be represented as sectors around one or several stellar clusters, or continuous (e.g., power-law, normal) distributions for any given parameter. We applied this approach to a grid of models calculated with the photoionization and photodissociation code Cloudy in order to produce topological models of I Zw 18. Results. The statistical framework we present makes it possible to consider a large number of spectroscopic tracers, with the extinction and systematic uncertainties as potential additional random variables. We applied this technique to the galaxy I Zw 18 in order to reproduce and go beyond previous topological models specifically tailored to this object. While our grid is designed for global properties of low-metallicity star-forming galaxies, we were able to calculate accurate values for the metallicity, number of ionizing photons, masses of ionized and neutral hydrogen, as well as the dust mass and the dust-to-gas mass ratio in I Zw 18. We find a relatively modest amount of H2 (~105 M) which is predominantly CO-dark and traced by C+ rather than C0. Nevertheless, more than 90% of the [C ii] emission is associated with the neutral atomic gas. Our models confirm the necessity to include an X-ray source with an inferred luminosity in good agreement with direct X-ray observations. Finally, we investigate the escape fraction of ionizing photons for different energy ranges. While the escape fraction for the main H ii region lies around 50–65%, we show that most of the soft X-ray photons are able to escape and may play a role in the ionization and heating of the circumgalactic or intergalactic medium. Conclusions. Multicomponent ISM models associate a complex enough distribution of matter and phases with a simple enough topological description to be constrained with probabilistic frameworks. Despite ignoring effects such as reflected light, the diffuse radiation field, or ionization by several non-cospatial sources, they remain well adapted to individual H ii regions and to star-forming galaxies dominated by one or a few H ii regions, and the improvement due to the combination of several components largely compensates for other secondary effects.

Funder

FACE Foundation Thomas Jefferson Fund

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3