Analysis of four solar occultations by Titan’s atmosphere with the infrared channel of the VIMS instrument: Haze, CH4, CH3D, and CO vertical profiles

Author:

Rannou P.ORCID,Coutelier M.,Rey M.,Vinatier S.

Abstract

Titan, the largest satellite of Saturn, has a dense atmosphere mainly composed of nitrogen, methane at a percent level, and minor species. It is also covered by a thick and global photochemical organic haze. In the last two decades, the observations made by the Cassini orbiter and the Huygens probe have greatly improved our knowledge of Titan's system. The surface, haze, clouds, and chemical species can be studied and characterised with several instruments simultaneously. On the other hand, some compounds of its climatic cycle remain poorly known. This is clearly the case of the methane cycle, which is, however, a critical component of Titan's climate and of its evolution. We reanalysed four solar occultations by Titan's atmosphere observed with the infrared part of the Visual Infrared Mapping Spectrometer (VIMS) instrument. These observations were already analysed, but here we used significantly improved methane spectroscopic data. We retrieved the haze properties (not treated previously) and the mixing ratios of methane, deuterated methane, and CO in the stratosphere and in the low mesosphere. The methane mixing ratio in the stratosphere is much lower (about 1.1%) than expected from Huygens measurements (about 1.4 to 1.5%). This is consistent with previous results obtained with other instruments. However, features in the methane vertical profiles clearly demonstrate that there are interactions between the methane distribution and the atmosphere circulation. We also retrieved the haze extinction profiles and the haze spectral behaviour. We find that aerosols are aggregates with a fractal dimension of Df ≃ 2.3 ± 0.1, rather than Df ≃ 2 as previously thought. Our analysis also reveals noticeable changes in their size distribution and their morphology with altitude and time. These changes are also clearly connected to the atmosphere circulation and concerns the whole stratosphere and the transition between the main and the detached haze layers. We finally display the vertical profiles of CH3D and CO for the four observations. Although the latter retrievals have large error bars due to noisy data, we could derive values in agreement with other works.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3