The evolving cluster cores: Putting together the pieces of the puzzle

Author:

Molendi S.,De Grandi S.,Rossetti M.,Bartalucci I.,Gastaldello F.,Ghizzardi S.,Gaspari M.

Abstract

Context. In this work we address the issue of whether the division of clusters in cool cores (CCs) and non-cool cores (NCCs) is due to a primordial difference or to how clusters evolve across cosmic time. Aims. Our first goal is to establish if spectra from the central regions of a subclass of NCCs known as cool core remnants (CCRs) are consistent with having a small but significant amount of short cooling time gas, thereby allowing a transformation to CC systems on a timescale of a giga year. Our second goal is to determine if low ionization Fe lines emitted from this residual cool gas will be detectable by the calorimeters that will fly on board XRISM and Athena. Methods. We performed a spectral analysis of CCR systems with a multi temperature model and, assuming the different components to be in pressure equilibrium with one another, derived entropy and cooling time distributions for the X-ray emitting gas. Results. We find that in most of our systems, the spectral model allows for a fraction of low entropy, short cooling time gas with a mass that is comparable to the one in CC systems. Moreover, simulations show that future spectrometers on board XRISM and Athena will have the power to directly resolve emission lines from the low temperature gas, thereby providing incontrovertible evidence for its presence. Conclusions. Within the scenario that we have explored, the constant fraction of CCs measured across cosmic time emerges from a dynamical equilibrium where CCs transformed in NCCs through mergers are balanced by NCCs that revert to CCs. Furthermore, CCs and NCCs should not be viewed as distinct sub classes, but as “states” between which clusters can move.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3