The miniJPAS survey

Author:

Rodríguez-Martín J. E.ORCID,González Delgado R. M.,Martínez-Solaeche G.,Díaz-García L. A.,de Amorim A.,García-Benito R.,Pérez E.,Cid Fernandes R.,Carrasco E. R.,Maturi M.,Finoguenov A.,Lopes P. A. A.,Cortesi A.,Lucatelli G.,Diego J. M.,Chies-Santos A. L.,Dupke R. A.,Jiménez-Teja Y.,Vílchez J. M.,Abramo L. R.,Alcaniz J.,Benítez N.,Bonoli S.,Cenarro A. J.,Cristóbal-Hornillos D.,Ederoclite A.,Hernán-Caballero A.,López-Sanjuan C.,Marín-Franch A.,Mendes de Oliveira C.,Moles M.,Sodré L.,Taylor K.,Varela J.,Vázquez Ramió H.,Márquez I.

Abstract

The Javalambre-Physics of the Accelerating Universe Astrophysical Survey (J-PAS) is a photometric survey that is poised to scan several thousands of square degrees of the sky. It will use 54 narrow-band filters, combining the benefits of low-resolution spectra and photometry. Its offshoot, miniJPAS, is a 1 deg2 survey that uses J-PAS filter system with the Pathfinder camera. In this work, we study mJPC2470-1771, the most massive cluster detected in miniJPAS. We survey the stellar population properties of the members, their star formation rates (SFR), star formation histories (SFH), the emission line galaxy (ELG) population, spatial distribution of these properties, and the ensuing effects of the environment. This work shows the power of J-PAS to study the role of environment in galaxy evolution. We used a spectral energy distribution (SED) fitting code to derive the stellar population properties of the galaxy members: stellar mass, extinction, metallicity, (u − r)res and (u − r)int colours, mass-weighted age, the SFH that is parametrised by a delayed-τ model (τ, t0), and SFRs. We used artificial neural networks for the identification of the ELG population via the detection of the Hα, [NII], Hβ, and [OIII] nebular emission. We used the Ew(Hα)-[NII] (WHAN) and [OIII]/Hα-[NII]/Hα (BPT) diagrams to separate them into individual star-forming galaxies and AGNs. We find that the fraction of red galaxies increases with the cluster-centric radius; and at 0.5R200 the red and blue fractions are both equal. The redder, more metallic, and more massive galaxies tend to be inside the central part of the cluster, whereas blue, less metallic, and less massive galaxies are mainly located outside of the inner 0.5R200. We selected 49 ELG, with 65.3% of them likely to be star-forming galaxies, dominated by blue galaxies, and 24% likely to have an AGN (Seyfert or LINER galaxies). The rest are difficult to classify and are most likely composite galaxies. These latter galaxies are red, and their abundance decreases with the cluster-centric radius; in contrast, the fraction of star-forming galaxies increases outwards up to R200. Our results are compatible with an scenario in which galaxy members were formed roughly at the same epoch, but blue galaxies have had more recent star formation episodes, and they are quenching out from within the cluster centre. The spatial distribution of red galaxies and their properties suggest that they were quenched prior to the cluster accretion or an earlier cluster accretion epoch. AGN feedback or mass might also stand as an obstacle in the quenching of these galaxies.

Funder

State Agency for Research of the Spanish MCIU

National Autonomous University of México

CONACyT

Spanish Ministerio de Economia, Industria y Competitividad

FAPESP

CNPq

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil

Fundação de Amparo à Pesquisa do Estado de São Paulo

European Union’s Horizon 2020 research and innovation programme

ETAg

EU

Government of Spain

Government of Aragón

Spanish Ministry of Science, Innovation and Universities

Spanish Ministry of Economy and Competitiveness

European FEDER funding

FINEP

FAPERJ

National Observatory of Brazil

Tartu Observatory

J-PAS Chinese Astronomical Consortium

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3