XMM-Newton study of six massive, X-ray luminous galaxy cluster systems in the redshift range z = 0.25–0.5

Author:

Böhringer H.,Chon G.,Ellis R. S.,Barrena R.,Laporte N.

Abstract

Massive galaxy clusters are interesting astrophysical and cosmological objects to study, but they are relatively rare. In the redshift range z = 0.25–0.5 which is, for example, a favourable region for gravitational lensing studies, about 100 such systems are known. Most of them have been studied in X-rays. In this paper we study the six remaining massive clusters in this redshift interval in the highly complete CLASSIX (Cosmic Large-Scale Structure in X-rays) survey which have so far not been observed with sufficiently deep exposures in X-rays. With data from our new XMM-Newton observations we characterise their structures, derive X-ray properties such as the X-ray luminosity and intracluster medium temperature, and estimate their gas and total masses. We find that one cluster, RXCJ1230.7+3439, is dynamically young with three distinct substructures in the cluster outskirts and RXCJ1310.9+2157/RXCJ1310.4+2151 is a double cluster system. Mass determination is difficult in the systems with substructure. We therefore discuss several methods of mass estimation including scaling relations. In summary, we find that five of the six targets of study are indeed massive clusters as expected, while the last cluster RXCJ2116.2−0309 is a close projection of a distant and a nearby cluster which has led to a previous overestimation of its mass. In the XMM-Newton observation fields, we also find three low redshift clusters close to the targets which are also analysed and described here. In the field of RXCJ2116.2−0309, we discover serendipitously a highly variable X-ray source which has decreased its flux within a year by more than a factor of eight. This source is most probably an active galactic nucleus (AGN).

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3