N-bearing complex organics toward high-mass protostars

Author:

Nazari P.ORCID,Meijerhof J. D.ORCID,van Gelder M. L.ORCID,Ahmadi A.ORCID,van Dishoeck E. F.ORCID,Tabone B.,Langeroodi D.,Ligterink N. F. W.ORCID,Jaspers J.ORCID,Beltrán M. T.ORCID,Fuller G. A.ORCID,Sánchez-Monge Á.ORCID,Schilke P.

Abstract

Context. Complex organic species are known to be abundant toward low- and high-mass protostars. No statistical study of these species toward a large sample of high-mass protostars with the Atacama Large Millimeter/submillimeter Array (ALMA) has been carried out so far. Aims. We aim to study six N-bearing species: methyl cyanide (CH3CN), isocyanic acid (HNCO), formamide (NH2CHO), ethyl cyanide (C2H5CN), vinyl cyanide (C2H3CN) and methylamine (CH3NH2) in a large sample of line-rich high-mass protostars. Methods. From the ALMA Evolutionary study of High Mass Protocluster Formation in the Galaxy survey, 37 of the most line-rich hot molecular cores with ~1" angular resolution are selected. Next, we fit their spectra and find column densities and excitation temperatures of the N-bearing species mentioned above, in addition to methanol (CH3OH) to be used as a reference species. Finally, we compare our column densities with those in other low- and high-mass protostars. Results. CH3OH, CH3CN and HNCO are detected in all sources in our sample, whereas C2H3CN and CH3NH2 are (tentatively) detected in ~78 and ~32% of the sources. We find three groups of species when comparing their excitation temperatures: hot (NH2CHO; Tex ≳ 250 K), warm (C2H3CN, HN13CO and CH313CN; 100 K ≲ Tex ≲ 250 K) and cold species (CH3OH and CH3NH2; Tex ≲ 100 K). This temperature segregation reflects the trend seen in the sublimation temperature of these molecules and validates the idea that complex organic emission shows an onion-like structure around protostars. Moreover, the molecules studied here show constant column density ratios across low- and high-mass protostars with scatter less than a factor ~3 around the mean. Conclusions. The constant column density ratios point to a common formation environment of complex organics or their precursors, most likely in the pre-stellar ices. The scatter around the mean of the ratios, although small, varies depending on the species considered. This spread can either have a physical origin (source structure, line or dust optical depth) or a chemical one. Formamide is most prone to the physical effects as it is tracing the closest regions to the protostars, whereas such effects are small for other species. Assuming that all molecules form in the pre-stellar ices, the scatter variations could be explained by differences in lifetimes or physical conditions of the pre-stellar clouds. If the pre-stellar lifetimes are the main factor, they should be similar for low- and high-mass protostars (within factors ~2–3).

Funder

European Research Council

Dutch Research Council

Danish National Research Foundation

VILLUM FONDEN

Swiss National Science Foundation

Netherlands Research School for Astronomy

Marie Sklodowska-Curie action

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3