Gravitoturbulent dynamo in global simulations of gaseous disks

Author:

Béthune William,Latter Henrik

Abstract

Context. The turbulence driven by gravitational instabilities (GIs) can amplify magnetic fields in massive gaseous disks. This GI dynamo may appear in young circumstellar disks, whose weak ionization challenges other amplification routes, as well as in active galactic nuclei. Although regarded as a large-scale dynamo, only local simulations have so far described its kinematic regime. Aims. We study the GI dynamo in global magnetohydrodynamic (MHD) models of accretion disks, focusing on its kinematic phase. Methods. We perform resistive MHD simulations with the PLUTO code for different radiative cooling times and electrical resistivities. A weak magnetic field seeds the dynamo, and we adopt mean-field and heuristic models to capture its essence. Results. We recover the same induction process leading to magnetic field amplification as previously identified in local simulations. The dynamo is, however, global in nature, connecting distant annuli of the disk via a large-scale dynamo mode of a fixed growth rate. This large-scale amplification can be described by a mean-field model that does not rely on conventional α-Ω effects. When varying the disk parameters we find an optimal resistivity that facilitates magnetic amplification, whose magnetic Reynolds number, ℛm ≲ 10, is substantially smaller than in local simulations. Unlike local simulations, we find an optimal cooling rate and the existence of global oscillating dynamo modes. The nonlinear saturation of the dynamo puts the disk in a strongly magnetized turbulent state on the margins of the effective range of GI. In our simulations, the accretion power eventually exceeds the threshold required by local thermal balance against cooling, leaving the long-term nonlinear outcome of the GI dynamo uncertain.

Funder

Deutsche Forschungsgemeinschaft

STFC

bwHPC & DFG

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3