Modelling the disc atmosphere of the low mass X-ray binary EXO 0748-676

Author:

Psaradaki I.,Costantini E.,Mehdipour M.,Díaz Trigo M.

Abstract

Low mass X-ray binaries exhibit ionized emission from an extended disc atmosphere that surrounds the accretion disc. However, the atmosphere’s nature and geometry is still unclear. In this work we present a spectral analysis of the extended atmosphere of EXO 0748-676 using high-resolution spectra from archival XMM-Newton observations. We model the spectrum that is obtained during the eclipses. This enables us to model the emission lines that come only from the extended atmosphere of the source, and study its physical structure and properties. The RGS spectrum reveals a series of emission lines consistent with transitions of OVIII, OVII, NeIX and NVII. We perform both Gaussian line fitting and photoionization modelling. Our results suggest that there are two photoionization gas components that are out of pressure equilibrium with respect to each other. One has an ionization parameter of log ξ ∼ 2.5 and a large opening angle, and one has log ξ ∼ 1.3. The second component possibly covers a smaller fraction of the source. From the density diagnostics of the OVII triplet using photoionization modelling, we detect a rather high density plasma of > 1013 cm−3 for the lower ionization component. This latter component also displays an inflow velocity. We propose a scenario where the high ionization component constitutes an extended upper atmosphere of the accretion disc. The lower ionization component may instead be a clumpy gas created from the impact of the accretion stream with the disc.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3