Uncertainties in gas kinematics arising from stellar continuum modeling in integral field spectroscopy data: the case of NGC 2906 observed with VLT/MUSE

Author:

Bellocchi E.ORCID,Ascasibar Y.,Galbany L.,Sánchez S. F.,Ibarra–Medel H.,Gavilán M.,Díaz Á.

Abstract

Context. Integral field spectroscopy (IFS) provides detailed information about galaxy kinematics at high spatial and spectral resolution, and the disentanglement of the gaseous and stellar components is a key step in the analysis of the data. Aims. We study how the use of several stellar-subtraction methods and line fitting approaches can affect the derivation of the main kinematic parameters (velocity and velocity dispersion fields) of the ionized gas component. Methods. The target of this work is the nearby galaxy NGC 2906, observed with the MUSE instrument at the Very Large Telescope (VLT). A sample of twelve spectra is selected from the inner (nucleus) and outer (spiral arms) regions, characterized by different ionization mechanisms. We compare three different methods to subtract the stellar continuum (FIT3D, STARLIGHT and pPXF), combined with one of the following stellar libraries: MILES, STELIB and GRANADA+MILES. Results. The choice of the stellar-subtraction method is the most important ingredient affecting the derivation of the gas kinematics, followed by the choice of the stellar library and by the line-fitting approach. In our data, typical uncertainties in the observed wavelength and width of the Hα and [NII] lines are of the order of ⟨δλrms ∼ 0.1 Å and ⟨δσrms ∼ 0.2 Å (i.e., ∼5 and 10 km s−1, respectively). The results obtained from the [NII] line seem to be slightly more robust, as it is less affected by stellar absorption than Hα. All methods considered yield statistically consistent measurements once a mean systemic contribution Δλ¯ = Δσ¯ = 0.2 ΔMUSE is added in quadrature to the line-fitting errors, where ΔMUSE = 1.1 Å ∼50 km s−1, which denotes the instrumental resolution of the MUSE spectra. Conclusions. Although the subtraction of the stellar continuum is critical in order to recover line fluxes, any method (including none) can be used to measure the gas kinematics, as long as an additional component, Δλ¯ = Δσ¯ = 0.2 ΔMUSE, is added to the error budget.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3