Seismic performance

Author:

Mosser B.ORCID,Michel E.,Samadi R.,Miglio A.ORCID,Davies G. R.,Girardi L.,Goupil M. J.

Abstract

Context. Asteroseismology is a unique tool that can be used to study the interior of stars and hence deliver unique information for the studiy of stellar physics, stellar evolution, and Galactic archaeology. Aims. We aim to develop a simple model of the information content of asteroseismology and to characterize the ability and precision with which fundamental properties of stars can be estimated for different space missions. Methods. We defined and calibrated metrics of the seismic performance. The metrics, expressed by a seismic index ℰ defined by simple scaling relations, are calculated for an ensemble of stars. We studied the relations between the properties of mission observations, fundamental stellar properties, and the performance index. We also defined thresholds for asteroseismic detection and measurement of different stellar properties. Results. We find two regimes of asteroseismic performance: the first where the signal strength is dominated by stellar properties and not by observational noise; and the second where observational properties dominate. Typically, for evolved stars, stellar properties provide the dominant terms in estimating the information content, while main sequence stars fall in the regime where the observational properties, especially stellar magnitude, dominate. We estimate scaling relations to predict ℰ with an intrinsic scatter of around 21%. Incidentally, the metrics allow us to distinguish stars burning either hydrogen or helium. Conclusions. Our predictions will help identify the nature of the cohort of existing and future asteroseismic observations. In addition, the predicted performance for PLATO will help define optimal observing strategies for defined scientific goals.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3