Comparative analysis of the influence of Sgr A* and nearby active galactic nuclei on the mass loss of known exoplanets

Author:

Wisłocka A. M.,Kovačević A. B.,Balbi A.ORCID

Abstract

Context. The detailed evolution of exoplanetary atmospheres has been the subject of decade-long studies. Only recently, investigations began on the possible atmospheric mass loss caused by the activity of galactic central engines. This question has so far been explored without using available exoplanet data. Aims. The goal of this paper is to improve our knowledge of the erosion of exoplanetary atmospheres through radiation from supermassive black holes (SMBHs) undergoing an active galactic nucleus (AGN) phase. Methods. To this end, we extended the well-known energy-limited mass-loss model to include the case of radiation from AGNs. We set the fraction of incident power ɛ available to heat the atmosphere as either constant (ɛ = 0.1) or flux dependent (ɛ = ɛ(FXUV)). We calculated the possible atmospheric mass loss for 54 known exoplanets (of which 16 are hot Jupiters residing in the Galactic bulge and 38 are Earth-like planets, EPs) due to radiation from the Milky Way’s (MW) central SMBH, Sagittarius A* (Sgr A*), and from a set of 107 220 AGNs generated using the 33 350 AGNs at z < 0.5 of the Sloan Digital Sky Survey database. Results. We found that planets in the Galactic bulge might have lost up to several Earth atmospheres in mass during the AGN phase of Sgr A*, while the EPs are at a safe distance from Sgr A* (>7 kpc) and have not undergone any atmospheric erosion in their lifetimes. We also found that the MW EPs might experience a mass loss up to ~15 times the Mars atmosphere over a period of 50 Myr as the result of exposure to the cumulative extreme-UV flux FXUV from the AGNs up to z = 0.5. In both cases we found that an incorrect choice of ɛ can lead to significant mass loss overestimates.

Funder

Ministry of Education, Science and Technological Development of Serbia

Erasmus Mundus Master Program, AstroMundus

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3