Investigation of the WR 11 field at decimeter wavelengths

Author:

Benaglia P.,del Palacio S.,Ishwara-Chandra C. H.,De Becker M.,Isequilla N. L.,Saponara J.

Abstract

The massive binary system WR 11 (γ2-Velorum) has recently been proposed as the counterpart of a Fermi source. If this association is correct, this system would be the second colliding wind binary detected in GeV γ-rays. However, the reported flux measurements from 1.4 to 8.64 GHz fail to establish the presence of nonthermal (synchrotron) emission from this source. Moreover, WR 11 is not the only radio source within the Fermi detection box. Other possible counterparts have been identified in archival data, some of which present strong nonthermal radio emission. We conducted arcsec-resolution observations toward WR 11 at very low frequencies (150–1400 MHz) where the nonthermal emission – if existent and not absorbed – is expected to dominate. We present a catalog of more than 400 radio emitters, among which a significant portion are detected at more than one frequency, including limited spectral index information. Twenty-one of these radio emitters are located within the Fermi significant emission. A search for counterparts for this last group pointed at MOST 0808–471; this source is 2′ away from WR 11 and is a promising candidate for high-energy emission, having a resolved structure along 325–1390 MHz. For this source, we reprocessed archive interferometric data up to 22.3 GHz and obtained a nonthermal radio spectral index of − 0.97 ± 0.09. However, multiwavelength observations of this source are required to establish its nature and to assess whether it can produce (part of) the observed γ-rays. WR 11 spectrum follows a spectral index of 0.74 ± 0.03 from 150 to 230 GHz, consistent with thermal emission. We interpret that any putative synchrotron radiation from the colliding-wind region of this relatively short-period system is absorbed in the photospheres of the individual components. Notwithstanding, the new radio data allowed us to derive a mass-loss rate of 2.5 × 10−5 M yr−1, which, according to the latest models for γ-ray emission in WR 11, would suffice to provide the required kinetic power to feed nonthermal radiation processes.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Search for particle acceleration in two massive Wolf–Rayet stars using uGMRT observations;Monthly Notices of the Royal Astronomical Society;2023-09-12

2. η Carinae with Fermi-LAT: two full orbits and the third periastron;Astronomy & Astrophysics;2021-10

3. Cygnus survey with the Giant Metrewave Radio Telescope at 325 and 610 MHz: the catalog;Astronomy & Astrophysics;2020-10

4. The high-energy emission from HD 93129A near periastron;Monthly Notices of the Royal Astronomical Society;2020-05-05

5. Hints of γ-ray orbital variability from γ2 Velorum;Astronomy & Astrophysics;2020-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3