Exploring the innermost dust formation region of the oxygen-rich AGB star IK Tauri with VLT/SPHERE-ZIMPOL and VLTI/AMBER

Author:

Adam C.ORCID,Ohnaka K.

Abstract

Context. Low- and intermediate-mass stars on the asymptotic giant branch (AGB) are known to be prevalent dust providers to galaxies, replenishing the surrounding medium with molecules and dust grains. However, the mechanisms responsible for the formation and acceleration of dust in the cool extended atmospheres of AGB stars are still open to debate. Aims. We present visible polarimetric imaging observations of the oxygen-rich AGB star IK Tau obtained with the high-resolution polarimetric imager VLT/SPHERE-ZIMPOL at post-maximum light (phase 0.27) as well as high-spectral resolution long-baseline interferometric observations with the AMBER instrument at the Very Large Telescope Interferometer (VLTI). We aim to spatially resolve the dust and molecule formation regions, and to investigate their physical and chemical properties within a few stellar radii of IK Tau. Methods. IK Tau was observed with VLT/SPHERE-ZIMPOL at three wavelengths in the pseudo-continuum (645, 748, and 820 nm), in the Hα line at 656.3 nm, and in the TiO band at 717 nm. The VLTI/AMBER observations were carried out in the wavelength region of the CO first overtone lines near 2.3 μm with a spectral resolution of 12 000. Results. The excellent polarimetric imaging capabilities of SPHERE-ZIMPOL have allowed us to spatially resolve clumpy dust clouds at 20–50 mas from the central star, which corresponds to 2–5 R when combined with a central star’s angular diameter of 20.7 ± 1.53 mas measured with VLTI/AMBER. The diffuse, asymmetric dust emission extends out to ~73 R. We find that the TiO emission extends to 150 mas (15 R). The AMBER data in the individual CO lines also suggest a molecular outer atmosphere extending to ~1.5 R. The results of our 2D Monte Carlo radiative transfer modelling of dust clumps suggest that the polarized intensity and degree of linear polarization can be reasonably explained by small-sized (0.1 μm) grains of Al2O3, MgSiO3, or Mg2SiO4 in an optically thin shell (τ550 nm = 0.5 ± 0.1) with an inner and outer boundary radius of 3.5 R and ≳25 R, respectively. The observed clumpy structures can be reproduced by a density enhancement of a factor of 3.0 ± 0.5. However, the model still predicts the total intensity profiles to be too narrow compared to the observed data, which may be due to the TiO emission and/or grains other than homogeneous, filled spheres. Conclusions. IK Tau’s mass-loss rate is 20–50 times higher than the previously studied AGB stars W Hya, R Dor, and o Cet. Nevertheless, our observations of IK Tau revealed that clumpy dust formation occurs close to the star as seen in those low mass-rate AGB stars.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3