Modelling carbon-chain species formation in lukewarm corinos with new multi-phase models

Author:

Wang YaoORCID,Chang Qiang,Wang Hongchi

Abstract

Context. Abundant carbon-chain species have been observed towards lukewarm corinos L1527, B228, and L483. These carbon-chain species are believed to be synthesized in the gas phase after CH4 desorbs from the dust grain surface at the temperature around 30 K. Aims. We investigate carbon-chain species formation in lukewarm corinos using a more rigorous numerical method and advanced surface chemical models. We also pay attention to the significance of the finite size effect. Methods. We used the macroscopic Monte Carlo method in our simulations. In addition to the two-phase model, the basic multi-phase model and the new multi-phase models were used for modelling surface chemistry on dust grains. All volatile species can sublime at their sublimation temperatures in the two-phase model while most volatile species are frozen in the ice mantle before water ice sublimes in the basic and the new multi-phase models. The new multi-phase models allow more volatile species to sublime at their sublimation temperatures than the basic multi-phase model does. Results. The significance of the finite size effect is dependent on the duration of the cold phase. The discrepancies between the rate equation approach and the Monte Carlo method decrease as the duration of the cold phase increases. When T ~ 30 K, the abundances of gaseous CH4 and CO in the two-phase model are the highest while the basic multi-phase model predicts the lowest CO and CH4 abundances among all models. The abundances of carbon-chain species in the basic and the new multi-phase models are lower than that in the two-phase model when T ~ 30 K because CH4 is crucial for the synthesis of carbon-chain species. However, because the abundance of electrons increases as the abundance of H3O+ decreases, some carbon-chain species abundances predicted by the basic multi-phase model may not be lower than that in the new multi-phase models. The two-phase model performs best in predicting carbon-chain species abundances to fit observations while the basic multi-phase model works the worst. The abundances of carbon-chain species predicted by the new multi-phase models agree reasonably well with observations. Conclusions. The amount of CH4 can diffuse inside the ice mantle, thus sublime upon warm-up plays a crucial role in the synthesis of carbon-chain species in the gas phase. The carbon-chain species observed in lukewarm corinos may be able to gauge surface chemical models.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3