X-ray emission of z > 2.5 active galactic nuclei can be obscured by their host galaxies

Author:

Circosta C.,Vignali C.,Gilli R.,Feltre A.,Vito F.,Calura F.,Mainieri V.,Massardi M.,Norman C.

Abstract

We present a multiwavelength study of seven active galactic nuclei (AGN) at spectroscopic redshift >2.5 in the 7 Ms Chandra Deep Field South that were selected for their good far-infrared (FIR) and submillimeter (submm) detections. Our aim is to investigate the possibility that the obscuration observed in the X-rays can be produced by the interstellar medium (ISM) of the host galaxy. Based on the 7 Ms Chandra spectra, we measured obscuring column densities NH,  X in excess of 7 × 1022 cm−2 and intrinsic X-ray luminosities LX >  1044 erg s−1 for our targets, as well as equivalent widths for the Fe Kα emission line EWrest ≳ 0.5−1 keV. We built the UV-to-FIR spectral energy distributions (SEDs) by using broadband photometry from the CANDELS and Herschel catalogs. By means of an SED decomposition technique, we derived stellar masses (M* ∼ 1011 M), IR luminosities (LIR >  1012 L), star formation rates (SFR ∼ 190−1680 M yr−1) and AGN bolometric luminosities (Lbol ∼ 1046 erg s−1) for our sample. We used an empirically calibrated relation between gas masses and FIR/submm luminosities and derived Mgas ∼ 0.8−5.4 × 1010M. High-resolution (0.3−0.7″) ALMA data (when available, CANDELS data otherwise) were used to estimate the galaxy size and hence the volume enclosing most of the ISM under simple geometrical assumptions. These measurements were then combined to derive the column density associated with the ISM of the host, which is on the order of NH,  ISM ∼ 1023−24 cm−2. The comparison between the ISM column densities and those measured from the X-ray spectral analysis shows that they are similar. This suggests that at least at high redshift, significant absorption on kiloparsec scales by the dense ISM in the host likely adds to or substitutes that produced by circumnuclear gas on parsec scales (i.e., the torus of unified models). The lack of unobscured AGN among our ISM-rich targets supports this scenario.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3