A particular carbon-chain-producing region: L1489 starless core

Author:

Wu Yuefang,Lin Lianghao,Liu XunchuanORCID,Chen Xi,Liu Tie,Zhang Chao,Ju Binggang,Yuan Jinghua,Wang Junzhi,Shen Zhiqiang,Kim Kee-Tae,Qin Sheng-Li,Li Juan,Liu Hongli,Zhang Tianwei,Xu Ye,Liu Qinghui

Abstract

We detected carbon-chain molecules (CCMs) HC2n+1N (n = 1−3) and C3S in Ku band as well as high-energy excitation lines including C4H N = 9–8, J = 17/2–15/2, 19/2–17/2, and CH3CCH J = 5–4, K = 2 in the 3 mm band toward a starless core called the eastern molecular core (EMC) of L1489 IRS. Maps of all the observed lines were also obtained. Comparisons with a number of early starless cores and the warm carbon-chain chemistry (WCCC) source L1527 show that the column densities of C4H and CH3CCH are close to those of L1527, and the CH3CCH column densities of the EMC and L1527 are slightly higher than those of TMC-1. The EMC and L1527 have similar C3S column densities, but they are much lower than those of all the starless cores, with only 6.5 and 10% of the TMC-1 value, respectively. The emissions of the N-bearing species of the EMC and L1527 are at the medium level of the starless cores. These comparisons show that the CCM emissions in the EMC are similar to those of L1527, though L1527 contains a protostar. Although dark and quiescent, the EMC is warmer and at a later evolutionary stage than classical carbon-chain–producing regions in the cold, dark, quiescent early phase. The PACS, SPIRE, and SCUBA maps evidently show that the L1489 IRS seems to be the heating source of the EMC. Although it is located at the margins of the EMC, its bolometric luminosity and bolometric temperature are relatively high. Above all, the EMC is a rather particular carbon-chain-producing region and is quite significant for CCM science.

Funder

National Key R&D Program of China

National Nature Science Foundation of China

Top Talents Program of Yunnan Province

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3