Gaia kinematics reveal a complex lopsided and twisted Galactic disc warp

Author:

Romero-Gómez M.ORCID,Mateu C.,Aguilar L.,Figueras F.,Castro-Ginard A.

Abstract

Context. There are few warp kinematic models of the Galaxy able to characterise both structure and kinematics, since these require high accuracy at large distances. These models are necessary to shed light on the lopsidedness of the warp and the twisting of the line-of-nodes of the stellar warp already seen in gas and dust. Aims. We use the vertical information coming from the Gaia Data Release 2 astrometric data up to G = 20 mag to characterise the structure of the Galactic warp, the related vertical motions, and the dependency of Galactic warp on age. Methods. We analyse two populations up to Galactocentric distances of 16 kpc: a young bright sample mainly formed by OB stars and an older one of red giant branch (RGB) stars. We use two methods (the pole count maps of great circle bands and Galactic longitude – proper motion in latitude lines) based on the Gaia observables, together with 2D projections of the positions and proper motions in the Galactic plane. Results. This work confirms the age dependency of the Galactic warp, both in position and kinematics, the height of the Galactic warp being of the order of 0.2 kpc for the OB sample and 1.0 kpc for the RGB at a Galactocentric distance of 14 kpc. Both methods find that the onset radius of the warp is 12 ∼ 13 kpc for the OB sample and 10 ∼ 11 kpc for the RGB. From the RGB sample, we find from Galactocentric distances larger than 10 kpc that the line-of-nodes twists away from the Sun-anticentre line towards Galactic azimuths ≈180−200° increasing with radius, though possibly influenced by extinction. Also, the RGB sample reveals a slightly lopsided stellar warp with ≈250 pc difference between the up and down sides. The line of maximum of proper motions in latitude is systematically offset from the line-of-nodes estimated from the spatial data, which our warp models predict as a kinematic signature of lopsidedness. We also show a prominent wave-like pattern of a bending mode different in the OB and RGB samples. Both positions and kinematics also reveal substructures that might not be related to the large-scale Galactic warp or to the bending mode. Conclusions. Gaia Data Release 2 data reveals a high degree of complexity in terms of both position and velocity that triggers the need for complex kinematic models flexible enough to combine both wave-like patterns and an S-shaped lopsided warp.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference66 articles.

1. Characterizing the Galactic warp with Gaia – I. The tilted ring model with a twist

2. Abedi H., Figueras F., Aguilar L., et al. 2015, in Highlights of Spanish Astrophysics VIII, eds. Cenarro A. J., Figueras F., Hernández-Monteagudo C., Trujillo Bueno J., & Valdivielso L., 423

3. Evolution over time of the Milky Way’s disc shape

4. A dynamically young and perturbed Milky Way disk

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tracing the Galactic Disk with the Kinematics of Gaia Cepheids;The Astrophysical Journal;2024-04-01

2. Structure, kinematics, and time evolution of the Galactic warp from Classical Cepheids;Monthly Notices of the Royal Astronomical Society;2024-01-31

3. Warp and flare of the old Galactic disc as traced by the red clump stars;Monthly Notices of the Royal Astronomical Society;2023-11-15

4. Response of gravitationally coupled gaseous and stellar components to asymmetric warp in disc galaxies;Monthly Notices of the Royal Astronomical Society;2023-10-17

5. Exploring the structure and kinematics of the Milky Way through A stars;Astronomy & Astrophysics;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3