Co-orbital exoplanets from close-period candidates: the TOI-178 case

Author:

Leleu A.,Lillo-Box J.,Sestovic M.,Robutel P.,Correia A. C. M.,Hara N.,Angerhausen D.,Grimm S. L.,Schneider J.

Abstract

Despite the existence of co-orbital bodies in the solar system, and the prediction of the formation of co-orbital planets by planetary system formation models, no co-orbital exoplanets (also called trojans) have been detected thus far. Here we study the signature of co-orbital exoplanets in transit surveys when two planet candidates in the system orbit the star with similar periods. Such a pair of candidates could be discarded as false positives because they are not Hill-stable. However, horseshoe or long-libration-period tadpole co-orbital configurations can explain such period similarity. This degeneracy can be solved by considering the transit timing variations (TTVs) of each planet. We subsequently focus on the three-planet-candidate system TOI-178: the two outer candidates of that system have similar orbital periods and were found to have an angular separation close to π∕3 during the TESS observation of sector 2. Based on the announced orbits, the long-term stability of the system requires the two close-period planets to be co-orbital. Our independent detrending and transit search recover and slightly favour the three orbits close to a 3:2:2 resonant chain found by the TESS pipeline, although we cannot exclude an alias that would put the system close to a 4:3:2 configuration. We then analyse the co-orbital scenario in more detail, and show that despite the influence of an inner planet just outside the 2:3 MMR, this potential co-orbital system could be stable on a gigayear time-scale for a variety of planetary masses, either on a trojan or a horseshoe orbit. We predict that large TTVs should arise in such a configuration with a period of several hundred days. We then show how the mass of each planet can be retrieved from these TTVs.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3