Possibility of chromospheric back-radiation influencing the lithium line formation in Spite plateau stars

Author:

Takeda Y.

Abstract

Context. Spectroscopically determined lithium abundances of metal-poor turn-off dwarfs are known to be nearly constant (Spite plateau), but manifestly lower than the primordial value expected from the standard cosmological model. However, abundance determination by using conventional model atmospheres may not necessarily be correct since the existence of high-temperature chromosphere even in very old stars has been confirmed. Aims. The aim of this study is to examine how the extra UV flux possibly irradiated from the chromosphere could affect the formation of the Li I 6708 line, and whether or not its influence might lead to a solution of the Li abundance discrepancy. Methods. A simple model chromosphere of a uniform thin gray slab emitting only thermal radiation is assumed, characterized by optical thickness and temperature. By taking into account this incident radiation in the surface boundary condition, non-local thermodynamical equilibrium calculations for neutral Li atoms are carried out in order to see how the equivalent widths and the resulting abundances are affected by these parameters. Results. If the parameters are appropriately chosen, the strength of the Li I 6708 line can be reduced by a factor of ~2–3 due to overionization caused by enhanced UV radiation, leading to an apparent lowering of the abundance by ~0.3–0.5 dex, which is consistent with the discrepancy in question. Moreover, the observed slight metallicity-dependent trend of the plateau can also be reproduced as a result of the change in atmospheric transparency. Conclusions. Superficial underestimation of Li abundances due to considerable overionization caused by chromospheric radiation may be regarded as a ponderable interpretation for the cosmological Li problem. The touchstone to verify this model would be to check the existence of significantly enhanced UV radiation in these Spite plateau stars, which should be detected if this scenario is valid, although very few such UV spectrophotometric observations have been done to date.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference26 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Four-hundred Very Metal-poor Stars Studied with LAMOST and Subaru. II. Elemental Abundances;The Astrophysical Journal;2022-06-01

2. 3D NLTE spectral line formation of lithium in late-type stars;Monthly Notices of the Royal Astronomical Society;2020-10-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3