Production of atomic hydrogen by cosmic rays in dark clouds

Author:

Padovani MarcoORCID,Galli DanieleORCID,Ivlev Alexei V.,Caselli PaolaORCID,Ferrara Andrea

Abstract

Context. Small amounts of atomic hydrogen, detected as absorption dips in the 21 cm line spectrum, are a well-known characteristic of dark clouds. The abundance of hydrogen atoms measured in the densest regions of molecular clouds can only be explained by the dissociation of H2 by cosmic rays. Aims. We wish to assess the role of Galactic cosmic rays in the formation of atomic hydrogen, for which we use recent developments in the characterisation of the low-energy spectra of cosmic rays and advances in the modelling of their propagation in molecular clouds. Methods. We modelled the attenuation of the interstellar cosmic rays that enter a cloud and computed the dissociation rate of molecular hydrogen that is due to collisions with cosmic-ray protons and electrons as well as fast hydrogen atoms. We compared our results with the available observations. Results. The cosmic-ray dissociation rate is entirely determined by secondary electrons produced in primary ionisation collisions. These secondary particles constitute the only source of atomic hydrogen at column densities above ~1021 cm−2. We also find that the dissociation rate decreases with column density, while the ratio between the dissociation and ionisation rates varies between about 0.6 and 0.7. From comparison with observations, we conclude that a relatively flat spectrum of interstellar cosmic-ray protons, such as suggested by the most recent Voyager 1 data, can only provide a lower bound for the observed atomic hydrogen fraction. An enhanced spectrum of low-energy protons is needed to explain most of the observations. Conclusions. Our findings show that a careful description of molecular hydrogen dissociation by cosmic rays can explain the abundance of atomic hydrogen in dark clouds. An accurate characterisation of this process at high densities is crucial for understanding the chemical evolution of star-forming regions.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3