Extreme fragmentation and complex kinematics at the center of the L1287 cloud

Author:

Juárez Carmen,Liu Hauyu Baobab,Girart Josep M.,Palau Aina,Busquet Gemma,Galván-Madrid Roberto,Hirano Naomi,Lin Yuxin

Abstract

Aims. The filamentary ~10-pc-scale infrared dark cloud L1287 located at a parallax distance of ~929 pc is actively forming a dense cluster of low-mass young stellar objects (YSOs) at its inner ~0.1 pc region. To help understand the origin of this low-mass YSO cluster, the present work aims at resolving the gas structures and kinematics with high angular resolution. Methods. We performed ~1′′ angular resolution (~930 AU) observations at ~1.3 mm wavelengths using the Submillimeter Array (SMA), which simultaneously cover the dust continuum emission and various molecular line tracers for dense gas, warm gas, shocks, and outflows. Results. From a 1.3-mm continuum image with a resolution of ~2′′ we identified six dense cores, namely SMA1-6. Their gas masses are in the range of ~0.44 M. From a 1.3-mm continuum image with a resolution of ~1′′, we find a high fragmentation level, with 14 compact millimeter sources within 0.1 pc: SMA3 contains at least nine internal condensations; SMA5 and SMA6 are also resolved with two internal condensations. Intriguingly, one condensation in SMA3 and another in SMA5 appear associated with the known accretion outburst YSOs RNO 1C and RNO 1B. The dense gas tracer DCN (3–2) well traces the dust continuum emission and shows a clear velocity gradient along the NW-SE direction centered at SMA3. There is another velocity gradient with opposite direction around the most luminous YSO, IRAS 00338 + 6312. Conclusions. The fragmentation within 0.1 pc in L1287 is very high compared to other regions at the same spatial scales. The incoherent motions of dense gas flows are sometimes interpreted by being influenced by (proto)stellar feedback (e.g., outflows), which is not yet ruled out in this particular target source. On the other hand, the velocities (with respect to the systemic velocity) traced by DCN are small, and the directions of the velocity gradients traced by DCN are approximately perpendicular to those of the dominant CO outflow(s). Therefore, we alternatively hypothesize that the velocity gradients revealed by DCN trace the convergence from the ≳0.1 pc scales infalling motion towards the rotational motions around the more compact (~0.02 pc) sources. This global molecular gas converging flow may feed the formation of the dense low-mass YSO cluster. Finally, we also found that IRAS 00338 + 6312 is the most likely powering source of the dominant CO outflow. A compact blue-shifted outflow from RNO 1C is also identified.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3