Phase mixing of nonlinear Alfvén waves

Author:

Prokopyszyn A. P. K.ORCID,Hood A. W.,De Moortel I.

Abstract

Aims. This paper presents 2.5D numerical experiments of Alfvén wave phase mixing and aims to assess the effects of nonlinearities on wave behaviour and dissipation. In addition, this paper aims to quantify how effective the model presented in this work is at providing energy to the coronal volume. Methods. The model is presented and explored through the use of several numerical experiments which were carried out using the Lare2D code. The experiments study footpoint driven Alfvén waves in the neighbourhood of a two-dimensional x-type null point with initially uniform density and plasma pressure. A continuous sinusoidal driver with a constant frequency is used. Each experiment uses different driver amplitudes to compare weakly nonlinear experiments with linear experiments. Results. We find that the wave trains phase-mix owing to variations in the length of each field line and variations in the field strength. The nonlinearities reduce the amount of energy entering the domain, as they reduce the effectiveness of the driver, but they have relatively little effect on the damping rate (for the range of amplitudes studied). The nonlinearities produce density structures which change the natural frequencies of the field lines and hence cause the resonant locations to move. The shifting of the resonant location causes the Poynting flux associated with the driver to decrease. Reducing the magnetic diffusivity increases the energy build-up on the resonant field lines, however, it has little effect on the total amount of energy entering the system. From an order of magnitude estimate, we show that the Poynting flux in our experiments is comparable to the energy requirements of the quiet Sun corona. However a (possibly unphysically) large amount of magnetic diffusion was used however and it remains unclear if the model is able to provide enough energy under actual coronal conditions.

Funder

Science and Technology Facilities Council

European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3