Plasma heating by magnetoacoustic wave propagation in the vicinity of a 2.5D magnetic null-point

Author:

Sabri S.,Poedts S.,Ebadi H.

Abstract

Context. Magnetohydrodynamic (MHD) waves have significant potential as a plasma heating mechanism. Finding a suitable wave dissipation mechanism is a very tough task, given the many observational constraints on the models, and this has resulted in the development of an important research community in solar physics. The magnetic field structure has an important role in the solar corona heating. Here, we investigate in detail current sheet mode generation via magnetic reconnection and mode conversion releases some of the free magnetic energy and produces heating. In addition, energy conversion is discussed completely. Moreover, nonlinear effects on density variations and, in turn, mode conversion are pursued. Aims. In order to assess the role of magnetoacoustic waves in plasma heating, we have modeled in detail a fast magneto-acoustic wave pulse near a magnetic null-point in a finite plasma-β. The behavior of the propagation and dissipation of the fast magneto-acoustic wave is investigated in the inhomogeneous magnetically structured solar corona. Particular attention is given to the dissipation of waves and coronal heating and energy transfer in the solar corona, focusing on the energy transfer resulting from the interaction of fast magneto-acoustic waves with 2.5D magnetic null-points. Methods. The shock−capturing Godunov−type PLUTO code was used to solve the ideal MHD set of equations in the context of wave-plasma energy transfer. Results. It is shown that magneto-acoustic waves could be a viable candidate to contribute significantly to the heating of the solar corona and maintain the solar corona at a temperature of a few million degrees. The temperature is not constant in the corona. Coronal heating occurs near magnetic null points. It is found that magnetic reconnection, phase mixing and mode conversion contribute to the heating. Moreover, nonlinear fast and slow magnetoacoustic waves are decoupled except in β = 1 layer.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3