Exploring the origin of clumpy dust clouds around cool giants

Author:

Höfner SusanneORCID,Freytag BerndORCID

Abstract

Context. Dust grains forming in the extended atmospheres of AGB stars are critical for the heavy mass loss of these cool luminous giants, as they provide radiative acceleration for the stellar winds. Characteristic mid-IR spectral features indicate that the grains consist mainly of silicates and corundum. The latter species seems to form in a narrow zone within about 2 stellar radii, preceding the condensation of silicate dust, which triggers the outflow. Recent high-angular-resolution observations show clumpy, variable dust clouds at these distances. Aims. We explore possible causes for the formation of inhomogeneous dust layers, using 3D dynamical simulations. Methods. We modeled the outer convective envelope and the dust-forming atmosphere of an M-type AGB star with the CO5BOLD radiation-hydrodynamics code. The simulations account for frequency-dependent gas opacities, and include a time-dependent description of grain growth and evaporation for corundum (Al2O3) and olivine-type silicates (Mg2SiO4). Results. In the inner, gravitationally bound, and corundum-dominated layers of the circumstellar envelope, a patchy distribution of the dust emerges naturally, due to atmospheric shock waves that are generated by large-scale convective flows and pulsations. The formation of silicate dust at somewhat larger distances probably indicates the outer limit of the gravitationally bound layers. The current models do not describe wind acceleration, but the cloud formation mechanism should also work for stars with outflows. Timescales of atmospheric dynamics and grain growth are similar to observed values. In spherical averages of dust densities, more easily comparable to unresolved observations and 1D models, the variable 3D morphology manifests itself as cycle-to-cycle variations. Conclusions. Grain growth in the wake of large-scale non-spherical shock waves, generated by convection and pulsations, is a likely mechanism for producing the observed clumpy dust clouds, and for explaining their physical and dynamical properties.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3