Overshooting in simulations of compressible convection

Author:

Käpylä P. J.ORCID

Abstract

Context. Convective motions that overshoot into regions that are formally convectively stable cause extended mixing. Aims. We aim to determine the scaling of the overshooting depth (dos) at the base of the convection zone as a function of imposed energy flux (ℱn) and to estimate the extent of overshooting at the base of the solar convection zone. Methods. Three-dimensional Cartesian simulations of hydrodynamic compressible non-rotating convection with unstable and stable layers were used. The simulations used either a fixed heat conduction profile or a temperature- and density-dependent formulation based on Kramers opacity law. The simulations covered a range of almost four orders of magnitude in the imposed flux, and the sub-grid scale diffusivities were varied so as to maintain approximately constant supercriticality at each flux. Results. A smooth heat conduction profile (either fixed or through Kramers opacity law) leads to a relatively shallow power law with dos ∝ ℱn0.08 for low ℱn. A fixed step-profile of the heat conductivity at the bottom of the convection zone leads to a somewhat steeper dependency on dos ∝ ℱn0.12 in the same regime. Experiments with and without subgrid-scale entropy diffusion revealed a strong dependence on the effective Prandtl number, which is likely to explain the steep power laws as a function of ℱn reported in the literature. Furthermore, changing the heat conductivity artificially in the radiative and overshoot layers to speed up thermal saturation is shown to lead to a substantial underestimation of the overshooting depth. Conclusions. Extrapolating from the results obtained with smooth heat conductivity profiles, which are the most realistic set-up we considered, suggest that the overshooting depth for the solar energy flux is about 20% of the pressure scale height at the base of the convection zone. This is two to four times higher than the estimates from helioseismology. However, the current simulations do not include rotation or magnetic fields, which are known to reduce convective overshooting.

Funder

Deutsche Forschungsgemeinschaft

Academy of Finland

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3