Systematic effects induced by half-wave plate precession into measurements of the cosmic microwave background polarization

Author:

D’Alessandro G.,Mele L.,Columbro F.,Pagano L.,Piacentini F.,de Bernardis P.,Masi S.

Abstract

Context. The primordial B-mode signal in the cosmic microwave background (CMB) represents the smoking gun of cosmic inflation, and measuring it is the main goal of current experimental effort. The most accessible method for measuring polarization features of the CMB radiation is a Stokes polarimeter based on the rotation of a half-wave plate (HWP). Aims. Current observational cosmology is starting to be limited by systematic effects. A Stokes polarimeter with a rotating HWP has the advantage of mitigating a long list of potential systematics by modulating the linearly polarized component of the radiation, but the rotating HWP itself may introduce new systematic effects that must be under control. This represents one of the most critical parts in the design of a B-mode experiment. It is therefore mandatory to take all the systematic effects into account that the instrumentation can induce. We here present, simulate, and analyze the spurious signal arising from the precession of a rotating HWP. Methods. We first derived an analytical formula to describe the systematic effect that is induced by the HWP precession on the propagating radiation, using the 3D generalization of the Müller formalism. We then performed several numerical simulations that show the effect induced on the Stokes parameters by this systematic. We also derived and discuss the effect on B-modes as measured by a satellite experiment. Results. We derive the analytical formula for the Stokes parameters from a Stokes polarimeter where the HWP follows a precessional motion with an angle θ0. We show the result depending on the HWP inertia tensor, spinning speed, and on θ0. The result of numerical simulations is reported as a simple time-line of the electric fields. Finally, assuming that the entire sky is observed with a satellite mission, we analyze the effect on B-mode measurements. Conclusions. The effect is not negligible at the sensitivity of current B-mode experiments, therefore this systematic needs to be carefully considered for future experiments.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Reference47 articles.

1. Abitbol M. H., Ahmed Z., Barron D., et al. 2017, ArXiv e-prints [arXiv:1706.02464]

2. Planck2015 results

3. Planck2015 results

4. Aumont J., Banfi S., Battaglia P., et al. 2016, ArXiv e-prints [arXiv:1609.04372]

5. TheMicrowave Anisotropy ProbeMission

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3