Revisiting the mass-luminosity relation with an effective temperature modifier

Author:

Wang Jifei,Zhong Zehao

Abstract

The mass-luminosity relation (MLR) is commonly used to estimate the stellar mass. The classical MLR can hardly fit data of all the stellar mass range, thus researchers have generally adopted piecewise MLRs based on the classical MLR with different exponents for different mass ranges. However, varying turning points for the piecewise MLRs and for the exponent of each segment were used, and the estimated stellar masses are not always as good as those obtained by dynamical methods. We suggest an alternative way to improve the mass estimation accuracy: adding an effective temperature modifier to modify every segment MLR. We use a corresponding estimating equation for G- and K-type main-sequence stars, and verify this equation on two eclipsing binary catalogs. We compare the estimated results with those from a classical MLR and several piecewise MLRs. We find that the new estimates are significantly more accurate than those from the classical MLR and some piecewise MLRs, and they are not inferior to the stellar masses from other piecewise MLRs. This indicates that the temperature modifier can effectively help improve the estimation accuracy. In addition, we discuss the effect of adding the temperature modifier on the practicability of estimating stellar masses.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rotational synchronisation of B-type binaries in 30 Doradus;Astronomy & Astrophysics;2024-08

2. Atmospheric and Fundamental Parameters of the Individual Components of Multiple Stellar Systems;The Astronomical Journal;2023-05-02

3. Short-duration accretion states of Polars as seen in TESS and ZTF data;Monthly Notices of the Royal Astronomical Society;2022-09-06

4. The GAPS programme at TNG;Astronomy & Astrophysics;2022-07

5. FUGIN hot core survey. I. Survey method and initial results for l = 10°–20°;Publications of the Astronomical Society of Japan;2021-04-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3