Consistent transport properties in multicomponent two-temperature magnetized plasmas

Author:

Wargnier Q.,Alvarez Laguna A.,Scoggins J. B.,Mansour N. N.,Massot M.,Magin T. E.

Abstract

Aims. We present a fluid model that has been developed for multicomponent two-temperature magnetized plasmas in chemical non-equilibrium for the partially to fully ionized collisional regimes. We focus on transport phenomena with the aim of representing the atmosphere of the Sun. Methods. This study is based on an asymptotic fluid model for multicomponent plasmas derived from kinetic theory, yielding a rigorous description of the dissipative effects. The governing equations and consistent transport properties are obtained using a multiscale Chapman-Enskog perturbative solution to the Boltzmann equation based on a dimensional analysis. The mass disparity between free electrons and heavy particles is accounted for, as well as the influence of the electromagnetic field. We couple this model to the Maxwell equations for the electromagnetic field and derive the generalized Ohm’s law for multicomponent plasmas. The model inherits a well-identified mathematical structure leading to an extended range of validity for the Sun’s atmospheric conditions. We compute consistent transport properties by means of a spectral Galerkin method using the Laguerre-Sonine polynomial approximation. Two non-vanishing polynomial terms are used when deriving the transport systems for electrons, whereas only one term is retained for heavy particles. Results. In a simplified framework where the plasma is fully ionized, we compare the transport properties for the lower solar atmosphere to conventional expressions for magnetized plasmas attributed to Braginskii, showing a good agreement between both results. For more general partially ionized conditions, representative of the lower solar atmosphere, we compute the muticomponent transport properties corresponding to the species diffusion velocities, heavy-particle and electron heat fluxes, and viscous stress tensor of the model for a helium-hydrogen mixture in local thermodynamic equilibrium. The model is assessed for the 3D radiative magnetohydrodynamic simulation of a pore at the Sun photosphere. The resistive term is found to dominate mainly the dynamics of the electric field at the pore location. The battery term for heavy particles appears to be higher at the pore location and at some intergranulation boundaries.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3