Author:
Margonis A.,Christou A.,Oberst J.
Abstract
We have characterised the Perseid meteoroid stream from data acquired in a series of observing campaigns between 2010 and 2016. The data presented in this work were obtained by the Smart Panoramic Optical Sensor Head (SPOSH), an all-sky camera system designed to image faint transient noctilucent phenomena on dark planetary hemispheres. For the data reduction, a sophisticated software package was developed that utilises the high geometric and photometric quality of images obtained by the camera system. We identify 934 meteors as Perseids, observed over a long period between late July (~124°) and mid-to-late August (~147°). The maximum meteor activity contributing to the annual shower was found at λ⊙ = 140°.08 ± 0°.07. The radiant of the shower was estimated at RA = 47°.2 and Dec = 57°.5 with a median error of 0°.6 and 0°.2, respectively. The mean population index of the shower between solar longitudes of 120°.68 and 145°.19 was r = 2.36 ± 0.05, showing strong temporal variation. A predicted outburst in shower activity for the night of August 11–12, 2016 was confirmed, with a peak observed 12.75 hr before the annual maximum at 23:30 ± 15′ UT. We measure a peak flux of 6.1 × 10−4 km−2 hr−1 for meteoroids of mass 1.6 × 10−2 g or more, appearing in the time period between 23:00 and 00:00 UT. We estimate the measured flux of the outburst meteoroids to be approximately twice as high as the annual meteoroid flux of the same mass. The population index of r = 2.19 ± 0.08, computed from the outburst Perseids in 2016, is higher than the value of r = 1.92 ± 0.06 derived from meteors observed in 2015 belonging to the annual Perseid shower which was active near the time of the outburst. A dust trail with an unusually high population index of r = 3.58 ± 0.24 was encountered in 2013 between solar longitudes 136°.261 and 137°.442. The relatively high r-value implies an encounter with a dust trail rich in low-mass particles.
Subject
Space and Planetary Science,Astronomy and Astrophysics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献