Exploring circumstellar effects on the lithium and calcium abundances in massive Galactic O-rich AGB stars

Author:

Pérez-Mesa V.,Zamora O.,García-Hernández D. A.,Osorio Y.,Masseron T.,Plez B.,Manchado A.,Karakas A. I.,Lugaro M.

Abstract

Context. We previously explored the circumstellar effects on Rb and Zr abundances in a sample (21) of massive Galactic O-rich asymptotic giant branch (AGB) stars. Here we are interested in clarifying the role of the extended atmosphere in the case of Li and Ca. Li is an important indicator of hot bottom burning while the total Ca abundances in these stars could be affected by neutron captures. Aims. We report new Li and Ca abundances in a larger sample (30) of massive Galactic O-rich AGB stars by using more-realistic extended model atmospheres. Li abundances had previously studied with hydrostatic models, while the Ca abundances have been determined here for the first time. Methods. We used a modified version of the spectral synthesis code Turbospectrum and consider the presence of a gaseous circumstellar envelope and radial wind in the modelling of the spectra of these massive AGB stars. The Li and Ca abundances were obtained from the 6708 Å Li I and 6463 Å Ca I resonance lines, respectively. In addition, we studied the sensitivity of the pseudo-dynamical models to variations of the stellar and wind parameters. Results. The Li abundances derived with the pseudo-dynamical models are very similar to those obtained from hydrostatic models (the average difference is 0.18 dex, σ2 = 0.02), with no difference for Ca. This indicates that the Li and Ca content in these stars is only slightly affected by the presence of a circumstellar envelope. We also found that the Li I and Ca I line profiles are not very sensitive to variations of the model wind parameters. Conclusions. The new Li abundances confirm the Li-rich (and super Li-rich, in some cases) nature of the sample stars, supporting the activation of hot bottom burning in massive Galactic AGB stars. This is in good agreement with the theoretical predictions for solar metallicity AGB models from ATON, Monash, and NuGrid/MESA but is at odds with the FRUITY database, which predicts no hot bottom burning leading to the production of Li. Most (20) sample stars display nearly solar (within the estimated errors and considering possible non-local thermodynamic equilibrium effects) Ca abundances that are consistent with the available s-process nucleosynthesis models for solar metallicity massive AGB stars, which predict overproduction of 46Ca relatively to the other Ca isotope and the creation of the radioactive isotope 41Ca (half life of 0.1 Myr) but no change in the total Ca abundance. A minority (five) of the sample stars seem to show a significant Ca depletion (by up to 1.0 dex). Possible explanations are offered to explain their apparent and unexpected Ca depletion.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3