Characterization of the Agilkia region through discrete-element simulation of Philae’s rebound

Author:

Wu Xiaoyu,Küppers Michael,Grieger Björn,Shang Haibin

Abstract

Context. The cold gas system and anchoring harpoons that were designed to hold Philae down after it landed on the Agilkia region of comet 67P/Churyumov-Gerasimenko (67P) failed. This caused the lander to move on a complex trajectory that comprised multiple impacts and rebounds. The motion of Philae was mainly dominated by the gravitational environment and the physical properties of the surface on Agilkia. This allows us to determine the physical properties of the surface layer by high-fidelity discrete-element simulations of Philae’s rebounds. Aims. We explore the surface physical properties of the Agilkia region on comet 67P by minimizing the difference in Philae’s rebound status between observational data and simulations based on the assumption of a granular-boulder hybrid surface material. Methods. We first developed an efficient gravity model to accurately approximate the high-resolution polyhedral shape of the comet. This allowed us to run many simulations for the landing trajectory. We developed a complete dynamical model of the motion of Philae, including a mechanical model of the lander and the hybrid surface model. This focused in particular on the interaction of discrete elements in Philae and the granular regolith layer with a boulder added on top of it. We used mixed discrete optimization to determine the input physical variables on Agilkia to fit the rebound observational data (Philae’s rebound velocity). Results. The discrete-element simulation constrained by Philae’s rebound velocity implies that Philae first impacted on a boulder and scratched it with the landing gear. After this, its three soles interacted with the granular regolith, which consists of particles with a mean diameter of 0.014 ± 0.004 cm. The thickness of the region interaction is estimated to be 0.272 ± 0.062 m with a corresponding density of 1443 ± 231 kg m−3. The Young modulus for each particle is estimated to be 108 Pa. Based on a porosity of 0.75, the friction of the surface of particles is derived to be moderate, with a friction coefficient of about 0.6.

Funder

National Natural Science Foundation of China

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3