The ultra-diffuse galaxy NGC 1052-DF2 with MUSE

Author:

Fensch JérémyORCID,van der Burg Remco F. J.,Jeřábková Tereza,Emsellem Eric,Zanella Anita,Agnello Adriano,Hilker Michael,Müller Oliver,Rejkuba Marina,Duc Pierre-Alain,Durrell Patrick,Habas Rebecca,Lim Sungsoon,Marleau Francine R.,Peng Eric W.,Sánchez Janssen Rubén

Abstract

NGC 1052-DF2, an ultra-diffuse galaxy (UDG), has been the subject of intense debate. Its alleged absence of dark matter, and the brightness and number excess of its globular clusters (GCs) at an initially assumed distance of 20 Mpc suggest a new formation channel for UDGs. We present the first systematic spectroscopic analysis of the stellar body and the GCs in this galaxy (six previously known and one newly confirmed member) using MUSE at the VLT. Even though NGC 1052-DF2 does not show any spatially extended emission lines, we report the discovery of three planetary nebulae (PNe). We conduct full spectral fitting on the UDG and the stacked spectra of all the GCs. The UDG’s stellar population is old, 8.9 ± 1.5 Gyr; metal poor, [M/H] = −1.07 ± 0.12; and with little or no α-enrichment. The stacked spectrum of all GCs indicates a similar age of 8.9 ± 1.8 Gyr, but a lower metallicity of [M/H] = −1.63 ± 0.09 and a similarly low α-enrichment. There is no evidence for a variation in age and metallicity in the GC population with the available spectra. The significantly more metal-rich stellar body with respect to its associated GCs, the age of the population, its metallicity, and its α-enrichment are all in line with other dwarf galaxies. NGC 1052-DF2 thus falls on the same empirical mass–metallicity relation as other dwarfs for the full distance range assumed in the literature. We find that both debated distance estimates (13 and 20 Mpc) are similarly likely, given the three discovered PNe.

Publisher

EDP Sciences

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3